Green Hydrogen Steelmaking

metallurgical competence center

Wels, November 15th, 2023

Michael Zarl, Thomas Bürgler

Climate goals

CO₂ emission scenarios

 EU Green Deal 2019: transform Europe into a continent with no net emissions of greenhouse gases in 2050 Austrian government program 2020: 100% renewable electric energy in 2030, climate neutrality in 2040

How is steel going to be produced?

Classical steel production routes

Iron and steel industry accounts for approx.
 7% of global anthropogenic CO₂ emissions

$$Fe_2O_3 + 6CO = 2Fe + 3CO_2 + 3CO$$

 $Fe_2O_3 + 6H_2 = 2Fe + 3H_2O + 3H_2$

H₂ potential 10 %

60 - 100 %

Roadmap to climate neutral steelmaking

C, NG, and H₂ in integrated steel production

- Origin and availability of electric energy are essential for renewable H₂ production and use of ore based metallics (OBM) in the DR-EAF route
- Climate neutrality of scrap based EAF steelmaking without OBM is only depending on the origin of electric energy

Climate neutral hydrogen production

European flagship project H2Future

One of the biggest proton exchange membrane (PEM) electrolyser units in the world with 6 MW power and 1.200 m³/h H₂ production at voestalpine Stahl Linz site for full scale demonstration of H₂ production and grid balancing

- Ambitious efficiency target at nominal power
- $W_{el} = 48 51 \text{ kWh/kg}$
- $\eta_{\text{System}} = 82 \% 77 \%$
- To demonstrate a CAPEX of < 1.000 €/kW for PEM technology

Project Budget: 17,8 M€

Total EU Funding: 12,0 M€ (70 % funding)

Project Duration: 5 years (2017-2021)

PEM reactions

Anode: $H_2O = 2H^+ + 0.5O_2 + 2e^-$

Cathode: $2H^+ + 2e^- = H_2$

Climate neutral hydrogen production

PEM demonstration plant Linz

voestalpine

- Dynamic response for all kind of grid services
- Stack efficiency up to 83% at rated load
- H₂ purity 99,9%, O₂ purity 99,0%

Replacement of fossil energy

Electricity demand for climate neutral steelmaking

Electric energy production in Austria

Electric energy demand for 6,0 Mt steel/a

7,5 TWh_{el} Downstream processes

https://www.bmk.gv.at/themen/energie/publikationen/

Replacement of fossil energy

Electricity production Austria 2022/23

- Renewable electric energy could not fully cover the electricity demand also from May to September
- Up to 50 % import demand or NG power plant production necessary for 100 % supply from October to April
- 27 TWh of new renewable electric energy generation capacities with high seasonal fluctuation in 2030
- 100% renewable sources createsmin. 10 TWh excess energy over6 months in summer period

Global trend for scrap availability

- Crude steel demand will be 30 % higher in 2050 than it is today
- Much of this growth will be in emerging economies with declining demand in China, Europe, Japan, and South Korea
- Contribution of scrap in the total steel charge will likely grow to 40 % in 2050 from 30 % than today
- Process technologies for OBM (ore based metallics) will have an important role in future CO₂ neutral steelmaking

https://missionpossiblepartnership.org/

Iron ore qualities

- Global iron ore market is dominated by low and medium grade iron ores
- High grade sea born iron ores are available in limited quantities
- 75% of all beneficiated iron ores are fines

How is steel going to be produced?

Transition process towards green steel

HYFOR DR process

- Test the performance of the HYFOR reactor and the preheating/oxidation cyclone under real operating conditions
- Direct reduction of magnetite/hematite iron ore fines with H₂ in fluidized bed reactor at 700 °C up to a metallization degree of 97 %

- Batch operation with 800 kg ultrafine iron ore is equal to 200 kg DRI per hour
- Pilot plant at voestalpine Donawitz site as technical basis for next development phase

Combined HYFOR and Smelter process

HBI...Hot Briquetted Iron
HCI...Hot Compacted Iron (low-quality HBI)

- Continuous operation from preheating iron ores to hot metal (HBI) in longer campaigns
- Flexible Ore Basis Utilization of multiple iron ore qualities (low to high-grades)
- Carbon addition Based on bio-char and other carbon carriers
- Hot link of DRI fines to Smelter (alternatively HCI) and addition of HBI/Scrap
- Addition of slag forming materials → slag shall be utilized in the cement industry (cross-sectorial approach)
- Autonomous operation of Smelter part

Steelmaking process routes

From iron ore to crude steel

Hydrogen plasma smelting reduction pilot plant

Process development Sustainable Steel (SuSteel)

- Fundamental research project for direct steelmaking from iron oxides with H₂ plasma smelting reduction (HPSR)
- Verify of process concept with batch operation in a DC electric arc furnace (EAF) with 250 kVA
- Upscaling of the technology from 100 g to 50 kg tapping weight
- Creating design parameters for an increased reactor size and continuous operation
- Demo plant for this breakthrough technology is located at voestalpine Donawitz site

SuSteel pilot plant

HPSR process in detail

PILOT PLANT SUSTEEL

The SuSteel project has the potential to become a breakthrough technology in the production of steel and is an essential part of voestalpine's "greentec

- 1 HYDROGEN AND **IRON ORE SUPPLY** Hydrogen and iron ore are fed to the plant
- 2 ELECTRIC ARC FURNACE The DC electric arc furnace is the heart of the plant. The reactions take place in the transferred arc.
- 3 **ELECTRODE** Iron ore and hydrogen enter the reaction zone of the arc via a hollow electrode
- **REACTION ZONE** Hydrogen is ionised into plasma and the iron ore is melted and reduced in one step. Crude steel is produced.
- 5 END PRODUCT: WATER VAPOUR At the end of the process, only water vapour escapes. CO2 emissions are fully avoided.

Commissioning of the pilot plant

CHRONOLOGICAL DEVELOPMENT IN PICTURES

May 2022

February 2023

April 2023

May 2023

MILESTONES

Plant

Plant erected

Trials

Stable trials

Production

First pure iron produced

Charging

Charging higher loads

Production

First blocks

History and outlook to a continuous process

Technological tasks for upscaling

INTEGRATED ROUTE (STATE OF THE ART)

Integrated route consisting of raw material preparation, blast furnace (iron making) and basic oxygen furnace (steel making)

HYDROGEN PLASMA SMELTING REDUCTION

SuS-F **Objectives**

HPSR route consisting of green hydrogen supply, prereduction of fines and HPSR

Thank you! Questions?

metallurgical competence center

Wels, November 15th, 2023

Michael Zarl, Thomas Buergler

