Software Technologie und Anwendungen Research Center Hagenberg
Publikationen
An integrated approach for power transformer modeling and manufacturing
C. Lettner, M. Moser, J. Pichler - An integrated approach for power transformer modeling and manufacturing - International Conference on Industry 4.0 and Smart Manufacturing, Linz, Österreich, 2020, pp. 351-355
Stepwise abstraction of high-level system specifications from source code
F. Ferrarotti, M. Moser, J. Pichler - Stepwise abstraction of high-level system specifications from source code - Journal of Computer Languages, 2020
Strategies for Training Deep Learning Models in Medical Domains with Small Reference Datasets
G. Zwettler, D. Holmes III, W. Backfrieder - Strategies for Training Deep Learning Models in Medical Domains with Small Reference Datasets - Proceedings of the WSCG 2020, Pilsen, Tschechische Republik, 2020, pp. 10
Hybrid Approach for Orientation-Estimation of Rotating Humans in Video Frames Acquired by Stationary Monocular Camera
D. Baumgartner, C. Praschl, T. Zucali, G. Zwettler - Hybrid Approach for Orientation-Estimation of Rotating Humans in Video Frames Acquired by Stationary Monocular Camera - Proceedings of the WSCG 2020, Pilsen, Tschechische Republik, 2020, pp. 9
The precise orientation-estimation of humans relative to the POSE of a monocular camera system is a challenging task due to the general aspects of camera…
mehr
Supporting Teamwork in Industrial Virtual Reality Applications
J. Wolfartsberger, J. Zenisek, N. Wild - Supporting Teamwork in Industrial Virtual Reality Applications - Procedia Manufacturing, 2020, pp. 2-7
Virtual Reality (VR) systems allow for novel modes of visualization and interaction to support engineering design reviews. However, there are still research…
mehr
Effects of Arrival Uncertainty on Solver Performance in Dynamic Stacking Problems
S. Raggl, A. Beham, S. Wagner, M. Affenzeller - Effects of Arrival Uncertainty on Solver Performance in Dynamic Stacking Problems - Proceedings of the 32nd European Modeling & Simulation Symposium (EMSS 2020), Online, Griechenland, 2020, pp. 193-200
Urheberrechtliche Relevanz von KI-generierten sowie verschlüsselten Inhalten
P. Burgstaller, E. Hermann - Urheberrechtliche Relevanz von KI-generierten sowie verschlüsselten Inhalten - Österreichsiche Blätter für gewerblichen Rechtsschutz und Urheberrecht, 2020
Der Einsatz von künstlich intelligenten (KI) Systemen tangiert beinahe alle Rechtsbereiche – vom Arbeits- und Datenschutzrecht über das Gesundheits- und Pflege…
mehr
Using Deep Learning for Depth Estimation and 3D Reconstruction of Humans
A. Freller, G. Zwettler - Using Deep Learning for Depth Estimation and 3D Reconstruction of Humans - Proceedings of the 32th EUROPEAN MODELING AND SIMULATION SYMPOSIUM, Athen, Griechenland, 2020, pp. 6
Deep learning depth estimation from monocular video feed is a common strategy to get rough 3D surface information when
an RGB-D camera is not present. Depth…
mehr
Characterizing Energy Consumption of Third-Party API Libraries using API Utilization Profiles
A. Schuler, G. Anderst-Kotsis - Characterizing Energy Consumption of Third-Party API Libraries using API Utilization Profiles - 2020 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), Bari, Italien, 2020
Background: Third-party software libraries often serve as fundamental building blocks for developing applications. However, depending on such libraries for…
mehr
Pre- and Post-processing Strategies for Generic Slice-wise Segmentation of Tomographic 3D datasets Utilizing U-Net Deep Learning Models Trained for Specific Diagnostic Domains
G. Zwettler, D. Holmes III, W. Backfrieder - Pre- and Post-processing Strategies for Generic Slice-wise Segmentation of Tomographic 3D datasets Utilizing U-Net Deep Learning Models Trained for Specific Diagnostic Domains - Proceedings of the VISAPP 2020, Valetta, Malta, 2020, pp. 66-78
MS Annika: A New Search Tool for the Identification of Cross-Linked Peptides from Tandem Mass Spectrometry Data
G. J. Pirklbauer, C. Stieger, S. M. Winkler, K. Mechtler, V. Dorfer - MS Annika: A New Search Tool for the Identification of Cross-Linked Peptides from Tandem Mass Spectrometry Data - Proceedings of the 9th Symposium on Structural Proteomics (SSP2019), Göttingen, Deutschland, 2019
Numerous chemical cross-linkers linkers have been developed over the last years, each with their own physical and chemical properties [1]. The development of…
mehr
Parameter identification for symbolic regression using nonlinear least squares
M. Kommenda, B. Burlacu, G. K. Kronberger, M. Affenzeller - Parameter identification for symbolic regression using nonlinear least squares - Genetic Programming and Evolvable Machines, 2019, pp. 471-501
In this paper we analyze the effects of using nonlinear least squares for parameter identification of symbolic regression models and integrate it as local…
mehr
Using Ontologies to Express Prior Knowledge for Genetic Programming
S. Prieschl, D. Girardi, G. K. Kronberger - Using Ontologies to Express Prior Knowledge for Genetic Programming - Machine Learning and Knowledge Extraction. CD-MAKE 2019., Canterbury, Vereinigtes Königreich von Großbritannien und Nordirland, 2019, pp. 362-376
Ontologies are useful for modeling domains and can be used to capture expert knowledge about a system. Genetic programming can be used to identify statistical…
mehr
A Cost Optimized Data Acquisition System For Predictive Maintenance
E. Strumpf, F. Holzinger, F. Eibensteiner, J. Langer - A Cost Optimized Data Acquisition System For Predictive Maintenance - 6. Tagung Innovation Messtechnik, Linz, Österreich, 2019, pp. 104-108
Preprocessing and Modeling of Radial Fan Data for Health State Prediction
F. Holzinger, M. Kommenda - Preprocessing and Modeling of Radial Fan Data for Health State Prediction - Computer Aided Systems Theory – EUROCAST 2019, Las Palmas, Gran Canaria, Spanien, 2019
Extended Regression Models for Predicting the Pumping Capability and Viscous Dissipation of Two-Dimensional Flows in Single-Screw Extrusion
W. Roland, M. Kommenda, C. Marschik, J. Miethlinger - Extended Regression Models for Predicting the Pumping Capability and Viscous Dissipation of Two-Dimensional Flows in Single-Screw Extrusion - Polymers, Vol. 11, No. 2, 2019
Generally, numerical methods are required to model the non-Newtonian flow of polymer melts in single-screw extruders. Existing approximation equations for…
mehr
New Approaches for Equalizing the Granulate Size and Bulk Density in Mechanical Recycling Using Heuristic Approaches Based on Specific Data Analyses
M. Aigner, L. Kammerer, F. Schieder, G. K. Kronberger - New Approaches for Equalizing the Granulate Size and Bulk Density in Mechanical Recycling Using Heuristic Approaches Based on Specific Data Analyses - Proceedings of SPE ANTEC 2019, Detroit, Vereinigte Staaten von Amerika, 2019, pp. 1-7
Exactly defined and constant granulates become more and more important in recycling business. The material is very often mixed with virgin granulate, sold on…
mehr
Analyzing the potential of Virtual Reality for engineering design review
J. Wolfartsberger - Analyzing the potential of Virtual Reality for engineering design review - Automation in Construction, 2019, pp. 27-37
Integration of Physical Knowledge in Empirical Models - A New Approach to Regression Analysis
G. K. Kronberger, S. Scheidel, C. Haider, M. Kommenda, M. Kordon - Integration of Physical Knowledge in Empirical Models - A New Approach to Regression Analysis - 8th International Symposium on Development Methodology, Wiesbaden, Deutschland, 2019, pp. 1-9
Design of experiments, empirical modelling and model-based optimization is a widely known and approved approach for high-dimensional optimization problems in…
mehr
Extracting High-Level System Specifications from Source Code via Abstract State Machines
F. Ferrarotti, J. Pichler, M. Moser, G. Buchgeher - Extracting High-Level System Specifications from Source Code via Abstract State Machines - International Conference on Model and Data Engineering, Tuolouse, France, Frankreich, 2019, pp. 267-283
Understanding and Preparing Data of Industrial Processes for Machine Learning Applications
P. Fleck, M. Kügel, M. Kommenda - Understanding and Preparing Data of Industrial Processes for Machine Learning Applications - Computer Aided Systems Theory – EUROCAST 2019, Las Palmas, Gran Canaria, Spanien, 2019
Seite 1 von 12